各個領域中的帶寬
在各類電子設備和元器件中,我們都可以接觸到帶寬的概念,例如我們熟知的顯示器的帶寬、內(nèi)存的帶寬、總線的帶寬和網(wǎng)絡的帶寬等等;對這些設備而言,帶寬是一個非常重要的指標。不過容易讓人迷惑的是,在顯示器中它的單位是MHz,這是一個頻率的概念;而在總線和內(nèi)存中的單位則是GB/s,相當于數(shù)據(jù)傳輸率的概念;而在通訊領域,帶寬的描述單位又變成了MHz、GHz……這兩種不同單位的帶寬表達的是同一個內(nèi)涵么?二者存在哪些方面的聯(lián)系呢?本文就帶你走入精彩的帶寬世界。
一、 帶寬的兩種概念
如果從電子電路角度出發(fā),帶寬(Bandwidth)本意指的是電子電路中存在一個固有通頻帶,這個概念或許比較抽象,我們有必要作進一步解釋。大家都知道,各類復雜的電子電路無一例外都存在電感、電容或相當功能的儲能元件,即使沒有采用現(xiàn)成的電感線圈或電容,導線自身就是一個電感,而導線與導線之間、導線與地之間便可以組成電容——這就是通常所說的雜散電容或分布電容;不管是哪種類型的電容、電感,都會對信號起著阻滯作用從而消耗信號能量,嚴重的話會影響信號品質(zhì)。這種效應與交流電信號的頻率成正比關系,當頻率高到一定程度、令信號難以保持穩(wěn)定時,整個電子電路自然就無法正常工作。為此,電子學上就提出了“帶寬”的概念,它指的是電路可以保持穩(wěn)定工作的頻率范圍。而屬于該體系的有顯示器帶寬、通訊/網(wǎng)絡中的帶寬等等。
而第二種帶寬的概念大家也許會更熟悉,它所指的其實是數(shù)據(jù)傳輸率,譬如內(nèi)存帶寬、總線帶寬、網(wǎng)絡帶寬等等,都是以“字節(jié)/秒”為單位。我們不清楚從什么時候起這些數(shù)據(jù)傳輸率的概念被稱為“帶寬”,但因業(yè)界與公眾都接受了這種說法,代表數(shù)據(jù)傳輸率的帶寬概念非常流行,盡管它與電子電路中“帶寬”的本意相差很遠。
對于電子電路中的帶寬,決定因素在于電路設計。它主要是由高頻放大部分元件的特性決定,而高頻電路的設計是比較困難的部分,成本也比普通電路要高很多。這部分內(nèi)容涉及到電路設計的知識,對此我們就不做深入的分析。而對于總線、內(nèi)存中的帶寬,決定其數(shù)值的主要因素在于工作頻率和位寬,在這兩個領域,帶寬等于工作頻率與位寬的乘積,因此帶寬和工作頻率、位寬兩個指標成正比。不過工作頻率或位寬并不能無限制提高,它們受到很多因素的制約,我們會在接下來的總線、內(nèi)存部分對其作專門論述。
在計算機系統(tǒng)中,總線的作用就好比是人體中的神經(jīng)系統(tǒng),它承擔的是所有數(shù)據(jù)傳輸?shù)穆氊煟鱾€子系統(tǒng)間都必須籍由總線才能通訊,例如,CPU和北橋間有前端總線、北橋與顯卡間為AGP總線、芯片組間有南北橋總線,各類擴展設備通過PCI、PCI-X總線與系統(tǒng)連接;主機與外部設備的連接也是通過總線進行,如目前流行的USB 2.0、IEEE1394總線等等,一句話,在一部計算機系統(tǒng)內(nèi),所有數(shù)據(jù)交換的需求都必須通過總線來實現(xiàn)!
按照工作模式不同,總線可分為兩種類型,一種是并行總線,它在同一時刻可以傳輸多位數(shù)據(jù),好比是一條允許多輛車并排開的寬敞道路,而且它還有雙向單向之分;另一種為串行總線,它在同一時刻只能傳輸一個數(shù)據(jù),好比只容許一輛車行走的狹窄道路,數(shù)據(jù)必須一個接一個傳輸、看起來仿佛一個長長的數(shù)據(jù)串,故稱為“串行”。
并行總線和串行總線的描述參數(shù)存在一定差別。對并行總線來說,描述的性能參數(shù)有以下三個:總線寬度、時鐘頻率、數(shù)據(jù)傳輸頻率。其中,總線寬度就是該總線可同時傳輸數(shù)據(jù)的位數(shù),好比是車道容許并排行走的車輛的數(shù)量;例如,16位總線在同一時刻傳輸?shù)臄?shù)據(jù)為16位,也就是2個字節(jié);而32位總線可同時傳輸4個字節(jié),64位總線可以同時傳輸8個字節(jié)......顯然,總線的寬度越大,它在同一時刻就能夠傳輸更多的數(shù)據(jù)。不過總線的位寬無法無限制增加。時鐘頻率和數(shù)據(jù)傳輸頻率的概念在上一期的文章中有過詳細介紹,我們就不作贅述。
總線的帶寬指的是這條總線在單位時間內(nèi)可以傳輸?shù)臄?shù)據(jù)總量,它等于總線位寬與工作頻率的乘積。例如,對于64位、800MHz的前端總線,它的數(shù)據(jù)傳輸率就等于64bit×800MHz÷8(Byte)=6.4GB/s;32位、33MHz PCI總線的數(shù)據(jù)傳輸率就是32bit×33MHz÷8=133MB/s,等等,這項法則可以用于所有并行總線上面——看到這里,讀者應該明白我們所說的總線帶寬指的就是它的數(shù)據(jù)傳輸率,其實“總線帶寬”的概念同“電路帶寬”的原始概念已經(jīng)風馬牛不相及。
對串行總線來說,帶寬和工作頻率的概念與并行總線完全相同,只是它改變了傳統(tǒng)意義上的總線位寬的概念。在頻率相同的情況下,并行總線比串行總線快得多,那么,為什么現(xiàn)在各類并行總線反而要被串行總線接替呢?原因在于并行總線雖然一次可以傳輸多位數(shù)據(jù),但它存在并行傳輸信號間的干擾現(xiàn)象,頻率越高、位寬越大,干擾就越嚴重,因此要大幅提高現(xiàn)有并行總線的帶寬是非常困難的;而串行總線不存在這個問題,總線頻率可以大幅向上提升,這樣串行總線就可以憑借高頻率的優(yōu)勢獲得高帶寬。而為了彌補一次只能傳送一位數(shù)據(jù)的不足,串行總線常常采用多條管線(或通道)的做法實現(xiàn)更高的速度——管線之間各自獨立,多條管線組成一條總線系統(tǒng),從表面看來它和并行總線很類似,但在內(nèi)部它是以串行原理運作的。對這類總線,帶寬的計算公式就等于“總線頻率×管線數(shù)”,這方面的例子有PCI Express和HyperTransport,前者有×1、×2、×4、×8、×16和×32多個版本,在第一代PCI Express技術當中,單通道的單向信號頻率可達2.5GHz,我們以×16舉例,這里的16就代表16對雙向總線,一共64條線路,每4條線路組成一個通道,二條接收,二條發(fā)送。這樣我們可以換算出其總線的帶寬為2.5GHz×16/10=4GB/s(單向)。除10是因為每字節(jié)采用10位編碼。
二、 內(nèi)存中的帶寬
除總線之外,內(nèi)存也存在類似的帶寬概念。其實所謂的內(nèi)存帶寬,指的也就是內(nèi)存總線所能提供的數(shù)據(jù)傳輸能力,但它決定于內(nèi)存芯片和內(nèi)存模組而非純粹的總線設計,加上地位重要,往往作為單獨的對象討論。
SDRAM、DDR和DDRⅡ的總線位寬為64位,RDRAM的位寬為16位。而這兩者在結(jié)構(gòu)上有很大區(qū)別:SDRAM、DDR和DDRⅡ的64位總線必須由多枚芯片共同實現(xiàn),計算方法如下:內(nèi)存模組位寬=內(nèi)存芯片位寬×單面芯片數(shù)量(假定為單面單物理BANK);如果內(nèi)存芯片的位寬為8位,那么模組中必須、也只能有8顆芯片,多一枚、少一枚都是不允許的;如果芯片的位寬為4位,模組就必須有16顆芯片才行,顯然,為實現(xiàn)更高的模組容量,采用高位寬的芯片是一個好辦法。而對RDRAM來說就不是如此,它的內(nèi)存總線為串聯(lián)架構(gòu),總線位寬就等于內(nèi)存芯片的位寬。
和并行總線一樣,內(nèi)存的帶寬等于位寬與數(shù)據(jù)傳輸頻率的乘積,例如,DDR400內(nèi)存的數(shù)據(jù)傳輸頻率為400MHz,那么單條模組就擁有64bit×400MHz÷8(Byte)=3.2GB/s的帶寬;PC 800標準RDRAM的頻率達到800MHz,單條模組帶寬為16bit×800MHz÷ 8=1.6GB/s。為了實現(xiàn)更高的帶寬,在內(nèi)存控制器中使用雙通道技術是一個理想的辦法,所謂雙通道就是讓兩組內(nèi)存并行運作,內(nèi)存的總位寬提高一倍,帶寬也隨之提高了一倍!
帶寬可以說是內(nèi)存性能最主要的標志,業(yè)界也以內(nèi)存帶寬作為主要的分類標準,但它并非決定性能的唯一要素,在實際應用中,內(nèi)存延遲的影響并不亞于帶寬。如果延遲時間太長的話相當不利,此時即便帶寬再高也無濟于事。
三、 帶寬匹配的問題
計算機系統(tǒng)中存在形形色色的總線,這不可避免帶來總線速度匹配問題,其中最常出問題的地方在于前端總線和內(nèi)存、南北橋總線和PCI總線。
前端總線與內(nèi)存匹配與否對整套系統(tǒng)影響最大,最理想的情況是前端總線帶寬與內(nèi)存帶寬相等,而且內(nèi)存延遲要盡可能低。在Pentium4剛推出的時候,Intel采用RDRAM內(nèi)存以達到同前端總線匹配,但RDRAM成本昂貴,嚴重影響推廣工作,Intel曾推出搭配PC133 SDRAM的845芯片組,但SDRAM僅能提供1.06GB/s的帶寬,僅相當于400MHz前端總線帶寬的1/3,嚴重不匹配導致系統(tǒng)性能大幅度下降;后來,Intel推出支持DDR266的845D才勉強好轉(zhuǎn),但仍未實現(xiàn)與前端總線匹配;接著,Intel將P4前端總線提升到533MHz、帶寬增長至5.4GB/s,雖然配套芯片組可支持DDR333內(nèi)存,可也僅能滿足1/2而已;現(xiàn)在,P4的前端總線提升到800MHz,而配套的865/875P芯片組可支持雙通道DDR400——這個時候才實現(xiàn)匹配的理想狀態(tài),當然,這個時候繼續(xù)提高內(nèi)存帶寬意義就不是特別大,因為它超出了前端總線的接收能力。
南北橋總線帶寬曾是一個尖銳的問題,早期的芯片組都是通過PCI總線來連接南北橋,而它所能提供的帶寬僅僅只有133MB/s,若南橋連接兩個ATA-100硬盤、100M網(wǎng)絡、IEEE1394接口......區(qū)區(qū)133MB/s帶寬勢必形成嚴重的瓶頸,為此,各芯片組廠商都發(fā)展出不同的南北橋總線方案,如Intel的Hub-Link、VIA的V-Link、SiS 的MuTIOL,還有AMD的 HyperTransport等等,目前它們的帶寬都大大超過了133MB/s,最高紀錄已超過1GB/s,瓶頸效應已不復存在。
PCI總線帶寬不足還是比較大的矛盾,目前PC上使用的PCI總線均為32位、33MHz類型,帶寬133MB/s,而這區(qū)區(qū)133MB/s必須滿足網(wǎng)絡、硬盤控制卡(如果有的話)之類的擴展需要,一旦使用千兆網(wǎng)絡,瓶頸馬上出現(xiàn),業(yè)界打算自2004年開始以PCI Express總線來全面取代PCI總線,屆時PCI帶寬不足的問題將成為歷史。
四、 顯示器中的帶寬
以上我們所說的“帶寬”指的都是速度概念,但對CRT顯示器來說,它所指的帶寬則是頻率概念、屬于電路范疇,更符合“帶寬”本來的含義。
要了解顯示器帶寬的真正含義,必須簡單介紹一下CRT顯示器的工作原理——由燈絲、陰極、控制柵組成的電子槍,向外發(fā)射電子流,這些電子流被擁有高電壓的加速器加速后獲得很高的速度,接著這些高速電子流經(jīng)過透鏡聚焦成極細的電子束打在屏幕的熒光粉層上,而被電子束擊中的地方就會產(chǎn)生一個光點;光點的位置由偏轉(zhuǎn)線圈產(chǎn)生的磁場控制,而通過控制電子束的強弱和通斷狀態(tài)就可以在屏幕上形成不同顏色、不同灰度的光點——在某一個特定的時刻,整個屏幕上其實只有一個點可以被電子束擊中并發(fā)光。為了實現(xiàn)滿屏幕顯示,這些電子束必須從左到右、從上到下一個一個象素點進行掃描,若要完成800×600分辨率的畫面顯示,電子槍必須完成800×600=480000個點的順序掃描。由于熒光粉受到電子束擊打后發(fā)光的時間很短,電子束在掃描完一個屏幕后必須立刻再從頭開始——這個過程其實十分短暫,在一秒鐘時間電子束往往都能完成超過85個完整畫面的掃描、屏幕畫面更新85次,人眼無法感知到如此小的時間差異會“誤以為”屏幕處于始終發(fā)亮的狀態(tài)。而每秒鐘屏幕畫面刷新的次數(shù)就叫場頻,或稱為屏幕的垂直掃描頻率、以Hz(赫茲)為單位,也就是我們俗稱的“刷新率”。以800×600分辨率、85Hz刷新率計算,電子槍在一秒鐘至少要掃描800×600×85=40800000個點的顯示;如果將分辨率提高到1024×768,將刷新率提高到100Hz,電子槍要掃描的點數(shù)將大幅提高。
按照業(yè)界公認的計算方法,顯示器帶寬指的就是顯示器的電子槍在一秒鐘內(nèi)可掃描的最高點數(shù)總和,它等于“水平分辨率×垂直分辨率×場頻(畫面刷新次數(shù))”,單位為MHz(兆赫);由于顯像管電子束的掃描過程是非線性的,為避免信號在掃描邊緣出現(xiàn)衰減影響效果、保證圖像的清晰度,總是將邊緣掃描部分忽略掉,但在電路中它們依然是存在的。因此,我們在計算顯示器帶寬的時候還應該除一個取值為0.6~0.8 的“有效掃描系數(shù)”,故得出帶寬計算公式如下:“帶寬=水平像素(行數(shù))×垂直像素(列數(shù))×場頻(刷新頻率)÷掃描系數(shù)”。掃描系數(shù)一般取為0.744。例如,要獲得分辨率1024×768、刷新率85Hz的畫面,所需要的帶寬應該等于:1024×768×85÷0.744,結(jié)果大約是90MHz。
不過,這個定義并不符合帶寬的原意,稱之為“像素掃描頻率”似乎更為貼切。帶寬的 最初概念確實也是電路中的問題——簡單點說就是:在“帶寬”這個頻率寬度之內(nèi),放大器可以處于良好的工作狀態(tài),如果超出帶寬范圍,信號會很快出現(xiàn)衰減失真現(xiàn)象。從本質(zhì)上說,顯示器的帶寬描述的也是控制電路的頻率范圍,帶寬高低直接決定顯示器所能達到的性能等級。由于前文描述的“像素掃描頻率”與控制電路的“帶寬”基本是成正比關系,顯示器廠商就干脆把它當作顯示器的“帶寬”——這種做法當然沒有什么錯,只是容易讓人產(chǎn)生認識上的誤區(qū)。當然,從用戶的角度考慮沒必要追究這么多,畢竟以“像素掃描頻率”作為“帶寬”是很合乎人們習慣的,大家可方便使用公式計算出達到某種顯示狀態(tài)需要的最低帶寬數(shù)值。
但是反過來說,“帶寬數(shù)值完全決定著屏幕的顯示狀態(tài)”是否也成立呢?答案是不完全成立,因為屏幕的顯示狀態(tài)除了與帶寬有關系之外,還與一個重要的概念相關——它就是“行頻”。行頻又稱為“水平掃描頻率”,它指的是電子槍每秒在熒光屏上掃描過的水平線數(shù)量,計算公式為:“行頻=垂直分辨率×場頻(畫面刷新率)×1.07”,其中1.07為校正參數(shù),因為顯示屏上下方都存在我們看不到的區(qū)域。可見,行頻是一個綜合分辨率和刷新率的參數(shù),行頻越大,顯示器就可以提供越高的分辨率或者刷新率。例如,1臺17寸顯示器要在1600×1200分辨率下達到75Hz的刷新率,那么帶寬值至少需要221MHz,行頻則需要96KHz,兩項條件缺一不可;要達到這么高的帶寬相對容易,而要達到如此高的行頻就相當困難,后者成為主要的制約因素,而出于商業(yè)因素考慮,顯示器廠商會突出帶寬而忽略行頻,這種宣傳其實是一種誤導。
五、 通訊中的帶寬
在通訊和網(wǎng)絡領域,帶寬的含義又與上述定義存在差異,它指的是網(wǎng)絡信號可使用的最高頻率與最低頻率之差、或者說是“頻帶的寬度”,也就是所謂的“Bandwidth”、“信道帶寬”——這也是最嚴謹?shù)募夹g定義。
在100M以太網(wǎng)之類的銅介質(zhì)布線系統(tǒng)中,雙絞線的信道帶寬通常用MHz為單位,它指的是信噪比恒定的情況下允許的信道頻率范圍,不過,網(wǎng)絡的信道帶寬與它的數(shù)據(jù)傳輸能力(單位Byte/s)存在一個穩(wěn)定的基本關系。我們也可以用高速公路來作比喻:在高速路上,它所能承受的最大交通流量就相當于網(wǎng)絡的數(shù)據(jù)運輸能力,而這條高速路允許形成的寬度就相當于網(wǎng)絡的帶寬。顯然,帶寬越高、數(shù)據(jù)傳輸可利用的資源就越多,因而能達到越高的速度;除此之外,我們還可以通過改善信號質(zhì)量和消除瓶頸效應實現(xiàn)更高的傳輸速度。
網(wǎng)絡帶寬與數(shù)據(jù)傳輸能力的正比關系最早是由貝爾實驗室的工程師Claude Shannon所發(fā)現(xiàn),因此這一規(guī)律也被稱為Shannon定律。而通俗起見普遍也將網(wǎng)絡的數(shù)據(jù)傳輸能力與“網(wǎng)絡帶寬”完全等同起來,這樣“網(wǎng)絡帶寬”表面上看與“總線帶寬”形成概念上的統(tǒng)一,但這兩者本質(zhì)上就不是一個意思、相差甚遠。
六、 總結(jié):帶寬與性能
對總線和內(nèi)存來說,帶寬高低對系統(tǒng)性能有著舉足輕重的影響——倘若總線、內(nèi)存的帶寬不夠高的話,處理器的工作頻率再高也無濟于事,因此帶寬可謂是與頻率并立的兩大性能決定要素。而對CRT顯示器而言,帶寬越高,往往可以獲得更高的分辨率、顯示精度越高,不過現(xiàn)在CRT顯示器的帶寬都能夠滿足標準分辨率下85Hz刷新率或以上的顯示需要(相信沒有太多的朋友喜歡用非常高的分辨率去運行程序或者游戲),這樣帶寬高低就不是一個太敏感的參數(shù)了,當然,如果你追求高顯示品質(zhì)那是另一回事了。
- 相關閱讀:
- 電路基礎
聲明:本站部分內(nèi)容根據(jù)互聯(lián)網(wǎng)資料整理而成,若侵犯您的權益,請聯(lián)系我們,我們會盡快處理。